Computational screening of chemical constituents derived from berry fruits as allosteric caspace-3/-7 inhibitors

3 Biotech. 2024 Oct;14(10):234. doi: 10.1007/s13205-024-04067-7. Epub 2024 Sep 16.

Abstract

With the aim of finding the plant-derived allosteric inhibitors of caspase-3/-7, we conducted computational investigations of bioactive compounds present in various berry fruits. In a molecular docking study, perulactone demonstrated excellent binding affinity scores of -12.1 kcal/mol and -9.1 kcal/mol for caspase 7 and 3, respectively, whereas FDA-approved allosteric inhibitors (DICA and FICA) were found to show lower docking scores (-5.6 and -6.1 kcal/mol) against caspase 7 while (-5.0 and -5.1 kcal/mol) for caspase 3, respectively. MD simulations were used to validate the binding stability of perulactone in the active sites of caspase-7/-3, and the results showed outstanding stability with lower ligand RMSDs of 1.270-3.088 Å and 2.426-9.850 Å against the targeted receptor. Furthermore, we performed MMGBSA free binding energy, where the perulactone values of ΔG Bind were determined to be -63.98 kcal/mol and -66.32 kcal/mol for both receptors (3IBF and 1NME), which are significantly better than the -45.16 kcal/mol and -39.51 kcal/mol for DICA as well as -26.37 kcal/mol and -15.50 kcal/mol for FICA, respectively. The drug resemblance of perulactone was effectively evaluated by ADMET. Thus, our findings indicated that perulactone could be an orally administered therapeutic candidate for regulating apoptosis in a variety of disorders. However, there may be an urgent need to study using in vitro and in vivo experiments.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04067-7.

Keywords: Allosteric site; Berry fruits; MMGBSA calculation; Molecular docking; Molecular dynamic simulation.