RNA-protein interactions are crucial for regulating gene expression and cellular functions, with their dysregulation potentially impacting disease progression. Systematically mapping these interactions is resource-intensive due to the vast number of potential RNA and protein interactions. Here, we introduce PRIM-seq (Protein-RNA Interaction Mapping by sequencing), a method for the concurrent de novo identification of RNA-binding proteins (RBPs) and the elucidation of their associated RNAs. PRIM-seq works by converting each RNA-protein pair into a unique chimeric DNA sequence, which is then decoded through DNA sequencing. Applied to two human cell types, PRIM-seq generated a comprehensive human RNA-protein association network (HuRPA), consisting of more than 350,000 RNA-proteins pairs involving approximately 7,000 RNAs and 11,000 proteins. The data revealed an enrichment of previously reported RBPs and RNA-protein interactions within HuRPA. We also identified LINC00339 as a protein-associating non-coding RNA and PHGDH as an RNA-associating protein. Notably, PHGDH interacts with BECN1 and ATF4 mRNAs, suppressing their protein expression and consequently inhibiting autophagy, apoptosis, and neurite outgrowth while promoting cell proliferation. PRIM-seq offers a powerful tool for discovering RBPs and RNA-protein associations, contributing to more comprehensive functional genome annotations.