Antimicrobial and Computational Studies of Newly Synthesized Benzotriazoles

Indian J Microbiol. 2024 Sep;64(3):1339-1346. doi: 10.1007/s12088-024-01344-0. Epub 2024 Jun 27.

Abstract

Antimicrobial Resistance (AMR) due to non-responding viruses, fungi, bacteria and parasites leads to discovery of new antimicrobial medicines which can control the risk of disease spread, severe illness, disability and death. Heterocyclic chemistry has always been a continuous supplier of novel antimicrobial agents which are in great demand in pharma sector. Therefore, compounds such as 1-(Chloromethyl)-1H-Benzotriazole, 1; 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)phenyl hydrazine, 2; 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)hydrazine, 3; and N-(benzo[e][1,2,4]triazin-4(3-H)-ylmethylbenzenamine, 4 were designed, and synthesized through conventional and microwave-assisted methods. All of these novel benzotriazoles were explored through in-vitro antimicrobial studies and in silico studies. Antimicrobial activity was carried out against bacterial strains Escherichia coli, Bacillus subtilis, and fungal strains Aspergillus niger and Candida albicans at concentrations 5, 10 and 15 mg/ml. In silico studies was carried out with 4CAW: Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a pyrazole sulphonamide ligand. Our antimicrobial and molecular docking studies revealed that all of the derivatives showed promising activity, moreover molecular docking gave significant values of ligand posed energy and docking run elapsed time which further endorsed the astonishing characteristic of benzotriazole derivatives esp. N-(benzo[e]a[1,2,4] triazin-4(3-H)-ylmethylbenzenamine for biological and therapeutic leads.

Keywords: Antimicrobial; Benzotriazole; Computational; In-Silico; Microwave.