Dried tangerine peel ("Chenpi"), has numerous clinical and nutritional benefits, with its quality being significantly influenced by its storage age, referred to as "Chen Jiu Zhe Liang" in Chinese. Concequently, the rapid and accurate identification of Chenpi's age is important for consumers. In this study, Fourier transform infrared spectroscopy (FTIR) was employed to capture spectral images of Chenpi. These FTIR images were then analyzed using a two-dimensional convolutional neural networks (2D-CNN) model, achieving a discrimination accuracy of 97.92%. To address the "black box" nature of the 2D-CNN, Gradient-weighted Class Activation Mapping Plus Plus (Grad-CAM++) was utilized to highlight the important regions contributing to the model's performance. Additionally, six other machine learning models were developped using features identified by the 2D-CNN to validate their effectiveness. The results demonstrated that the combination of FTIR spectral images and 2D-CNN provides a highly effective method for accurately determining the age of Chenpi.
Keywords: 2D-CNN; Chenpi; FTIR spectral image; Feature visualization; Grad-CAM++.
© 2024 The Author(s).