MXene/polymer dot-decorated flexible sensor for cancer cell-responsive hydrogel with tunable elastic modulus, porosity, and conductivity

Talanta. 2024 Sep 14:281:126874. doi: 10.1016/j.talanta.2024.126874. Online ahead of print.

Abstract

This study reports a facile strategy for cancer cell modulated mechanically and electronically tunable hydrogel based on MXene-immobilized hyaluronic acid polymer dot (M-PD). Elevated levels of reactive oxygen species (ROS), such as H2O2 in cancer cells cleave MXene owing to the oxygen-titanium affinity of Ti3C2Tx, altering the physico-mechanical, electrochemical, and fluorescence (FL) properties of the sensor. The H2O2-induced cleavage of M-PD in the hydrogel causes the quenched FL intensity by the Forster resonance energy transfer effect (FRET) to recover, alongside an increase in pore size, influencing shifts in hydrogen bonding and inducing viscoelastic changes in the flexible sensor. This caused physico-mechanical alterations in the sensor, modified the viscosity (G' decreased by 98.7%), and enhanced the stretchability. Further, in vitro electrochemical impedance spectroscopy (EIS) highlighted the distinct results for cancer cells (B16F10: 8.10 kΩ, MDA-MB-231: 8.30 kΩ), and normal cells (CHO-K1: 3.40 kΩ), showcasing electrochemical differentiation between these cells. Additionally, the flexible M-PD hydrogel sensor exhibits high sensitivity, with detection limits of 2.58 cells/well (CHO-K1), 0.96 cells/well (B16F10), and 1.20 cells/well (MDA-MB-231). Finally, real-time cancer monitoring was achieved by integrating the M-PD hydrogel with a wireless setup on a smartphone.

Keywords: Adhesive; Cancer sensing; Conductive hydrogel; Flexible sensor; ROS-responsive.