Binary terpenoid-based eutectic systems consisting of the natural substances camphene (CA), fenchol (FE), thymol (TH), menthol (ME), dodecanoic acid (DA), and 1-dodecanol (DO) are synthesized and screened for their Solid-Liquid Equilibrium (SLE) and eutectic compositions. Out of nine eutectic systems, 13 solvent compositions at eutectic points and next to them, in addition to the reference solvent, TH:ME, are synthesized and applied for the solvent extraction of the aromatic aldehydes vanillin (VAN), syringaldehyde (SYR), and p-hydroxybenzaldehyde (HYD) from an acidic aqueous model solution. The extraction efficiency is determined from aldehyde concentrations measured by High-Performance Liquid Chromatography (HPLC), taking into consideration mutual solubility measured by Karl Fischer titration (KF) and a Total Organic Carbon-analysis (TOC). Physicochemical properties, such as the density, viscosity, and stability of the solvents, are evaluated and discussed. Additionally, 1H-NMR measurements are performed to verify hydrogen bonding present in some of the solvents. The results show that all synthesized eutectic systems have a strong hydrophobic character with a maximum water saturation of ≤2.21 vol.% and solvent losses of ≤0.12 vol.% per extraction step. The hydrophobic eutectic solvents based on CA exhibit lower viscosities, lower mutual solubility, and lower extraction efficiency for the aromatic aldehydes when compared with FE-based solvents. The highest extraction efficiencies for VAN (>95%) and for SYR (>93%) at an extraction efficiency of 92.61% for HYD are achieved by the reference solvent TH:ME (50:50 mol.%). With an extraction efficiency of 93.08%, HYD is most preferably extracted by the FE-DO-solvent (80:20 mol.%), where the extraction efficiencies for VAN and SYR reach their maximum at 93.37% and 90.75%, respectively. The drawbacks of the high viscosities of 34.741 mPas of the TH:ME solvent and 31.801 mPas of the FE-DO solvent can be overcome by the CA-TH solvent, which has a viscosity of 3.436 mPas, while exhibiting extraction efficiencies of 71.92% for HYD, >95% for VAN, and >93% for SYR, respectively.
Keywords: eutectic solvents; p-hydroxybenzaldehyde; solid–liquid equilibrium; solvent extraction; syringaldehyde; terpenes and terpenoids; vanillin.