Weight Update in Ferroelectric Memristors with Identical and Nonidentical Pulses

ACS Appl Mater Interfaces. 2024 Sep 25;16(38):51109-51117. doi: 10.1021/acsami.4c10338. Epub 2024 Sep 12.

Abstract

Ferroelectric tunnel junctions (FTJs) are a class of memristor which promise low-power, scalable, field-driven analog operation. In order to harness their full potential, operation with identical pulses is targeted. In this paper, several weight update schemes for FTJs are investigated, using either nonidentical or identical pulses, and with time delays between the pulses ranging from 1 μs to 10 s. Experimentally, a method for achieving nonlinear weight update with identical pulses at long programming delays is demonstrated by limiting the switching current via a series resistor. Simulations show that this concept can be expanded to achieve weight update in a 1T1C cell by limiting the switching current through a transistor operating in subthreshold or saturation mode. This leads to a maximum linearity in the weight update of 86% for a dynamic range (maximum switched polarization) of 30 μC/cm2. It is further demonstrated via simulation that engineering the device to achieve a narrower switching peak increases the linearity in scaled devices to >93% for the same range.

Keywords: current compliance; ferroelectric Hf0.5Zr0.5O2 (HZO); ferroelectric tunnel junction (FTJ); memory window; memristor; multilevel operation; weight update.