Apelin-13-Loaded Macrophage Membrane-Encapsulated Nanoparticles for Targeted Ischemic Stroke Therapy via Inhibiting NLRP3 Inflammasome-Mediated Pyroptosis

Int J Nanomedicine. 2024 Sep 7:19:9175-9193. doi: 10.2147/IJN.S475915. eCollection 2024.

Abstract

Purpose: Ischemic stroke is a refractory disease wherein the reperfusion injury caused by sudden restoration of blood supply is the main cause of increased mortality and disability. However, current therapeutic strategies for the inflammatory response induced by cerebral ischemia-reperfusion (I/R) injury are unsatisfactory. This study aimed to develop a functional nanoparticle (MM/ANPs) comprising apelin-13 (APNs) encapsulated in macrophage membranes (MM) modified with distearoyl phosphatidylethanolamine-polyethylene glycol-RVG29 (DSPE-PEG-RVG29) to achieve targeted therapy against ischemic stroke.

Methods: MM were extracted from RAW264.7. PLGA was dissolved in dichloromethane, while Apelin-13 was dissolved in water, and CY5.5 was dissolved in dichloromethane. The precipitate was washed twice with ultrapure water and then resuspended in 10 mL to obtain an aqueous solution of PLGA nanoparticles. Subsequently, the cell membrane was evenly dispersed homogeneously and mixed with PLGA-COOH at a mass ratio of 1:1 for the hybrid ultrasound. DSPE-PEG-RVG29 was added and incubated for 1 h to obtain MM/ANPs.

Results: In this study, we developed a functional nanoparticle delivery system (MM/ANPs) that utilizes macrophage membranes coated with DSPE-PEG-RVG29 peptide to efficiently deliver Apelin-13 to inflammatory areas using ischemic stroke therapy. MM/ANPs effectively cross the blood-brain barrier and selectively accumulate in ischemic and inflamed areas. In a mouse I/R injury model, these nanoparticles significantly improved neurological scores and reduced infarct volume. Apelin-13 is gradually released from the MM/ANPs, inhibiting NLRP3 inflammasome assembly by enhancing sirtuin 3 (SIRT3) activity, which suppresses the inflammatory response and pyroptosis. The positive regulation of SIRT3 further inhibits the NLRP3-mediated inflammation, showing the clinical potential of these nanoparticles for ischemic stroke treatment. The biocompatibility and safety of MM/ANPs were confirmed through in vitro cytotoxicity tests, blood-brain barrier permeability tests, biosafety evaluations, and blood compatibility studies.

Conclusion: MM/ANPs offer a highly promising approach to achieve ischemic stroke-targeted therapy inhibiting NLRP3 inflammasome-mediated pyroptosis.

Keywords: apelin-13; cerebral ischemia-reperfusion injury; ischemic stroke therapy; macrophage membrane; pyroptosis.

MeSH terms

  • Animals
  • Cell Membrane / drug effects
  • Cell Membrane / metabolism
  • Inflammasomes* / drug effects
  • Inflammasomes* / metabolism
  • Intercellular Signaling Peptides and Proteins / chemistry
  • Intercellular Signaling Peptides and Proteins / pharmacology
  • Ischemic Stroke* / drug therapy
  • Macrophages* / drug effects
  • Macrophages* / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • NLR Family, Pyrin Domain-Containing 3 Protein* / metabolism
  • Nanoparticles* / chemistry
  • Phosphatidylethanolamines / chemistry
  • Polyethylene Glycols / chemistry
  • Pyroptosis* / drug effects
  • RAW 264.7 Cells
  • Reperfusion Injury / drug therapy

Substances

  • apelin-13 peptide
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Inflammasomes
  • Intercellular Signaling Peptides and Proteins
  • Polyethylene Glycols
  • Nlrp3 protein, mouse
  • Phosphatidylethanolamines
  • polyethylene glycol-distearoylphosphatidylethanolamine

Grants and funding

This work was supported by the National Natural Science Foundation of China (82101410), the Medicine and Science Innovation Plan Project of Shandong Second Medical University (no. 2021BKQ009), and a Graduate Student Research Grant from Shandong Second Medical University. We would like to thank Editage for English language editing.