Dclk1 expression defines a rare population of cells in the normal pancreas whose frequency is increased at early stages of pancreatic tumorigenesis. The identity and the precise roles of Dclk1 expressing cells in pancreas have been matter of debate, although evidence suggests their involvement in a number of key functions, including regeneration and neoplasia. We employed a recently developed Dclk1 reporter mouse model and single cell RNAseq analysis to define Dclk1 expressing cells in normal pancreas and pancreatic neoplasia. In normal pancreas, Dclk1 epithelial expression identifies subsets of ductal, islet and acinar cells. In pancreatic neoplasia, Dclk1 expression identifies five epithelial cell populations, among which acinar-to-ductal metaplasia (ADM)-like cells and tuft-like cells are predominant. These two cell populations play opposing roles in pancreatic neoplasia, with Dclk1+ ADM-like cells sustaining tumor growth while Dclk1+ tuft-like cells restraining tumor progression. The differentiation of Kras mutant acinar cells into Dclk1+ tuft-like cells requires the activation of the transcription factor SPIB and is further supported by a cellular paracrine loop involving cancer group 2 innate lymphoid cells (ILC2) and cancer activated fibroblasts (CAFs) that provide IL13 and IL33, respectively. In turn, Dclk1+ tuft-like cells release angiotensinogen that plays protective roles against pancreatic neoplasia. Overall, our study provides novel insights on the biology of Dclk1+ cells in normal pancreas and unveils a protective axis against pancreatic neoplasia, involving CAFs, ILC2 and Dclk1+ tuft-like cells, which ultimately results in angiotensinogen release.