Characterization of the interference patterns observed in B-mode images (i.e., speckle statistics) is a valuable tool in tissue characterization. However, changes in echo amplitudes unrelated to speckle, including power loss due to attenuation and diffraction, can bias these metrics, undermining their utility. Tissue with high attenuation such as the uterine cervix are especially affected. The purpose of this study was to demonstrate and quantify the effects of attenuation and diffraction on speckle statistics and to propose methods of compensation. Analysis was performed on simulated diffuse scattering phantoms of varying attenuation with simulated transducers at 9 and 5 MHz center frequency. Application in the in vivo macaque cervix using a clinical scanner is also presented. Nakagami and homodyned K distribution parameters were calculated in parameter estimation regions (PERs) of varying size within simulations and experiments. Changes in speckle statistics parameters with respect to PER size and depth were compared with and without two different compensation schemes. It has been shown that compensation for attenuation and diffraction is necessary to produce speckle statistics estimates that do not depend on medium attenuation or PER size. Reducing the dependence on these factors connects speckle statistics estimates more closely with the microstructure of the probed medium.
Keywords: Attenuation; Envelope statistics; Homodyned K; Nakagami; Parameter estimation; Speckle statistics.
Copyright © 2024 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.