Background: Many patients with bipolar disorder (BD) do not respond to or have difficulties tolerating lithium and/or other mood stabilizing agents. There is a need for personalized treatments based on biomarkers in guiding treatment options. The calcium voltage-gated channel CACNA1C is a promising candidate for developing personalized treatments. CACNA1C is implicated in BD by genome-wide association studies and several lines of evidence suggest that targeting L-type calcium channels could be an effective treatment strategy. However, before such individualized treatments can be pursued, biomarkers predicting treatment response need to be developed.
Methods: As a first step in testing the hypothesis that CACNA1C genotype is associated with serum levels of CACNA1C, we conducted ELISA measures on serum samples from 100 subjects with BD and 100 control subjects.
Results: We observed significantly higher CACNA1C (p < 0.01) protein levels in subjects with BD. The risk single nucleotide polymorpshism (SNP) (rs11062170) showed functional significance as subjects homozygous for the risk allele (CC) had significantly greater CACNA1C protein levels compared to subjects with one (p = 0.013) or no copies (p = 0.009). We observed higher somatostatin (SST) (p < 0.003) protein levels and lower levels of the clock protein aryl hydrocarbon receptor nuclear translocator-like (ARTNL) (p < 0.03) and stress signaling factor corticotrophin releasing hormone (CRH) (p < 0.001) in BD. SST and period 2 (PER2) protein levels were associated with both alcohol dependence and lithium response.
Conclusions: Our findings represent the first evidence for increased serum levels of CACNA1C in BD. Along with altered levels of SST, ARNTL, and CRH our findings suggest CACNA1C is associated with circadian rhythm and stress response disturbances in BD.
Keywords: Bipolar disorder; CACNA1C; Circadian rhythms; Somatostatin; Stress response.
Copyright © 2024 Elsevier B.V. All rights reserved.