Expanding the genotypic and phenotypic spectra with a novel variant in the ciliopathy gene, CFAP410, associated with selective cone degeneration

Ophthalmic Genet. 2024 Sep 4:1-7. doi: 10.1080/13816810.2024.2369271. Online ahead of print.

Abstract

Background: CFAP410 (Cilia and Flagella Associated Protein 410) encodes a protein that has an important role in the development and function of cilia. In ophthalmology, pathogenic variants in CFAP410 have been described in association with cone rod dystrophy, retinitis pigmentosa, with or without macular staphyloma, or with systemic abnormalities such as skeletal dysplasia and amyotrophic lateral sclerosis. Herein, we report a consanguineous family with a novel homozygous CFAP410 c.335_346del variant with cone only degeneration and no systemic features.

Methods: A retrospective analysis of ophthalmic history, examination, retinal imaging, electrophysiology and microperimetry was performed as well as genetic testing with in silico pathogenicity predictions and a literature review.

Results: A systemically well 28-year-old female of Pakistani ethnicity with parental consanguinity and no relevant family history, presented with childhood-onset poor central vision and photophobia. Best-corrected visual acuity and colour vision were reduced (0.5 LogMAR, 6/17 Ishihara plates (right) and 0.6 LogMAR, 3/17 Ishihara plates (left). Fundus examination showed no pigmentary retinopathy, no macular staphyloma and autofluorescence was unremarkable. Optical coherence tomography showed subtle signs of intermittent disruption of the ellipsoid zone. Microperimetry demonstrated a reduction in central retinal sensitivity. Electrodiagnostic testing confirmed a reduction in cone-driven responses. Whole-genome sequencing identified an in-frame homozygous deletion of 12 base pairs at c.335_346del in CFAP410.

Conclusions: The non-syndromic cone dystrophy phenotype reported herein expands the genotypic and phenotypic spectra of CFAP410-associated ciliopathies and highlights the need for light of potential future genetic therapies.

Keywords: C21orf2; CFAP410; ciliopathy; cone dystrophy; gene therapy; retinitis pigmentosa; skeletal abnormalities.