Accurately ascertaining spatiotemporal distribution of pollution plume is critical for evaluating the effectiveness of remediation technologies and environmental risks associated with contaminated sites. This study concentrated on a typical Cr(VI) contaminated smelter being currently remediated using pump-and-treat (PAT) technology. Long-term on-site monitoring data revealed that two highly polluted regions with Cr(VI) concentrations of 162.9 mg/L and 234.5 mg/L existed within the contaminated site, corresponding to previous chromium slag yard and sewage treatment plant, respectively. The PAT technology showed significant removal performance in these highly polluted areas (>160 mg/L) after six months of pumping, ultimately achieving complete removal of the pollutants in these high-pollution areas. Numerical simulation results showed that although the current remediation scheme significantly reduced the Cr(VI) pollution degree, it did not effectively prevent the incursion of the pollution plume into the downstream residential area after 20 years. Additionally, an improved measure involving supplementary pumping wells was proposed, and its remediation effects were quantitatively evaluated. Results indicated that the environmental pollution risk of groundwater downstream could be effectively mitigated by adding pumping wells, resulting in a reduction of the pollution area by 20 % in the case of adding an internal well and 41 % with the addition of external wells after 20 years. The findings obtained in this study will provide an important reference and theoretical guidance for the reliability analysis and design improvement of the PAT remediation project.
Keywords: Contaminated site; Heavy metal; Numerical simulation; Pollution plume; Pump-and-treat.
Copyright © 2024 Elsevier B.V. All rights reserved.