Exploring waterborne viruses in groundwater: Quantification and Virome characterization via passive sampling and targeted enrichment sequencing

Water Res. 2024 Aug 22:266:122305. doi: 10.1016/j.watres.2024.122305. Online ahead of print.

Abstract

Aquifers, which provide drinking water for nearly half the world's population, face significant challenges from microbial contamination, particularly from waterborne viruses such as human adenovirus (HAdV), norovirus (NoV) and enterovirus (EV). This study, conducted as part of the UPWATER project, investigates the sources of urban groundwater contamination using viral passive sampling (VPS) and target enrichment sequencing (TES). We assessed the abundance of eight viral pathogens (HAdV, EV, NoV genogroup I and II, rotavirus, influenza A virus, hepatitis E virus and SARS-CoV-2) and investigated the virome diversity of groundwater in the aquifer of the Besòs River Delta in Catalonia. Over a period of 7 months, we collected 114 samples from the aquifer using nylon and nitrocellulose membranes to adsorb viruses over a 10-day period. Human faecal contamination was detected in nearly 50 % of the groundwater samples, with mean HAdV total counts ranging from 1.23E+02 to 3.66E+03 GC, and occasional detections of EV and NoV GI and GII. In addition, deep sequencing revealed a diverse virome in the aquifer, with detection of human pathogens, including adenovirus, astrovirus, calicivirus, enterovirus, herpesvirus, papillomavirus and rotavirus. Time-integrated sampling using VPS increases the likelihood of virus detection and, when combined with TES, can provide a deeper understanding of virus prevalence in this important water compartment. This approach is expected to streamline long-term monitoring efforts and enable small communities or water managers with limited resources to effectively manage their groundwater reservoirs.

Keywords: Adenovirus; Enterovirus; Groundwater monitoring; Norovirus; Passive sampling; Target enrichment sequencing.