Purpose: Modern photon radiotherapy effectively spares cardiac structures more than previous volumetric approaches. Still, it is related to non-negligible cardiac toxicity due to the low-dose bath of surrounding normal tissues. However, the dosimetric advantages of particle radiotherapy make it a promising treatment for para- and intra-cardiac tumours. In the current short report, we evaluate the cardiac safety profile of carbon ion radiotherapy (CIRT) for radioresistant intra- and para-cardiac malignancies in a real-world setting.
Methods: We retrospectively analysed serum biomarkers (TnI, CRP and NT-proBNP), echocardiographic, and both 12-lead and 24-hour Holter electrocardiogram (ECG) data of consecutive patients with radioresistant intra- and para-cardiac tumours irradiated with CIRT between June 2019 and September 2022. In the CIRT planning optimization process, to minimize the delivered doses, we contoured and gave a high priority to the cardiac substructures. Weekly re-evaluative 4D computed tomography scans were carried out throughout the treatment.
Results: A total of 16 patients with intra- and para-cardiac localizations of radioresistant tumours were treated up to a total dose of 70.4 Gy relative biological effectiveness (RBE) and a mean heart dose of 2.41 Gy(RBE). We did not record any significant variation of the analysed serum biomarkers after CIRT nor significant changes of echocardiographic features, biventricular strain, or 12-lead and 24-hour Holter ECG parameters during 6 months of follow-up.
Conclusion: Our pilot study suggests that carbon ion radiotherapy is a promising radiation technique capable of sparing off-target side effects at the cardiac level. A larger cohort, long-term follow-up and further prospective studies are needed to confirm these findings.
Keywords: CIRT; Cardiac toxicity; Echocardiographic toxicity features; Radioresistant thoracic tumours; Serum toxicity biomarkers.
© 2024. Springer-Verlag GmbH Germany, part of Springer Nature.