The landscape of RNA-binding proteins in mammalian spermatogenesis

Science. 2024 Aug 29:eadj8172. doi: 10.1126/science.adj8172. Online ahead of print.

Abstract

Despite continuous expansion of the RNA-binding protein (RBP) world, there is a lack of systematic understanding of RBPs in mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-crosslinked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled-coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.