Hexagonal Boron Nitride Based Photonic Quantum Technologies

Materials (Basel). 2024 Aug 20;17(16):4122. doi: 10.3390/ma17164122.

Abstract

Hexagonal boron nitride is rapidly gaining interest as a platform for photonic quantum technologies, due to its two-dimensional nature and its ability to host defects deep within its large band gap that may act as room-temperature single-photon emitters. In this review paper we provide an overview of (1) the structure, properties, growth and transfer of hexagonal boron nitride; (2) the creationof colour centres in hexagonal boron nitride and assignment of defects by comparison with ab initio calculations for applications in photonic quantum technologies; and (3) heterostructure devices for the electrical tuning and charge control of colour centres that form the basis for photonic quantum technology devices. The aim of this review is to provide readers a summary of progress in both defect engineering and device fabrication in hexagonal boron nitride based photonic quantum technologies.

Keywords: chemical vapour deposition; density functional theory; electron paramagnetic resonance; hexagonal boron nitride; molecular beam epitaxy; optically detected magnetic resonance; quantum photonics; single-photon emitters; spin qubits; van der Waals epitaxy.

Publication types

  • Review