Classification of protein domains based on homology and structural similarity serves as a fundamental tool to gain biological insights into protein function. Recent advancements in protein structure prediction, exemplified by AlphaFold, have revolutionized the availability of protein structural data. We focus on classifying about 9000 Pfam families into ECOD (Evolutionary Classification of Domains) by using predicted AlphaFold models and the DPAM (Domain Parser for AlphaFold Models) tool. Our results offer insights into their homologous relationships and domain boundaries. More than half of these Pfam families contain DPAM domains that can be confidently assigned to the ECOD hierarchy. Most assigned domains belong to highly populated folds such as Immunoglobulin-like (IgL), Armadillo (ARM), helix-turn-helix (HTH), and Src homology 3 (SH3). A large fraction of DPAM domains, however, cannot be confidently assigned to ECOD homologous groups. These unassigned domains exhibit statistically different characteristics, including shorter average length, fewer secondary structure elements, and more abundant transmembrane segments. They could potentially define novel families remotely related to domains with known structures or novel superfamilies and folds. Manual scrutiny of a subset of these domains revealed an abundance of internal duplications and recurring structural motifs. Exploring sequence and structural features such as disulfide bond patterns, metal-binding sites, and enzyme active sites helped uncover novel structural folds as well as remote evolutionary relationships. By bridging the gap between sequence-based Pfam and structure-based ECOD domain classifications, our study contributes to a more comprehensive understanding of the protein universe by providing structural and functional insights into previously uncharacterized proteins.
Keywords: AlphaFold structural modeling; DPAM; ECOD; Pfam; Protein classification.
Copyright © 2024 Elsevier Ltd. All rights reserved.