Materials exhibiting different textural and surface properties (SiO2, TiO2, ZrO2 and ZSM-5) were investigated as supports for Mo carbides in the upgrading of furfural (FF) in liquid phase to produce 2-methylfuran (2MF). The state of the catalysts after carburization, passivation, and reactivation under a hydrogen atmosphere was investigated by XAS analysis. The effect of the supports was observed in the first step of the reaction, i.e., the hydrogenation of FF to furfuryl acid and related to Lewis acidic and basic sites. The nature of the supports was also relevant to the final state of the Mo carbides after carburization, passivation, and reactivation. The comparison of the materials showed that Mo2C/SiO2 was the least decarburized catalyst after reactivation, and the most active in converting furfural, while the Mo2C/TiO2 system presented smaller carbide particles after carburization and more disorganized particles after reactivation. Mo carbide supported on SiO2 and on TiO2 were found to be suitable catalysts for producing a mixture containing 2-methylfuran and C10 compounds with potential application as biofuel.
This journal is © The Royal Society of Chemistry.