Background: Peritoneal metastasis of gastric cancer is closely associated with dismal prognosis. In previous preclinical proof-of-concept studies, an amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotide (ASO), designated ASO-4733 that targets the gene encoding synaptotagmin XIII (SYT13), inhibited cellular functions required for the formation of peritoneal metastasis of gastric cancer cells. ASO-4733 achieved therapeutic effects when intra-abdominally administered to mouse xenograft models. Here, we conducted an analysis of Syt13-deficient mice to determine the pharmacokinetics and toxicity of intra-abdominal administration of ASO-4733.
Methods: The effects of Syt13-deficiency in mice were determined. Good Laboratory Practice toxicity tests and the toxicokinetics of intra-abdominal administration of ASO-4733 were conducted in cynomolgus monkeys and rats. The pharmacokinetics of ASO-4733 administered intravenously or intra-abdominally to rats were investigated.
Results: Syt13-deficient mice exhibited normal reproduction, organ functions, and motor functions. Weekly intra-abdominal administration of ASO-4733 (125 mg/kg), corresponding to a 50-fold increase of the estimated clinical dose for 4 weeks, was well tolerated by cynomolgus monkeys. In rats, off-target toxicity (not attributable to hybridization) was observed after weekly intra-abdominal administration of ASO-4733. Blood concentrations of ASO-4733 were lower and rose more slowly after intra-abdominal administration compared with intravenous administration.
Conclusions: The preclinical profile of intra-abdominal administration of ASO-4733 demonstrated its suitability for entry into clinical trials of patients with peritoneal metastasis of gastric cancer.
Keywords: Antisense oligonucleotide; Gastric cancer; Intra-abdominal treatment; Peritoneal metastasis; Synaptotagmin XIII.
© 2024. The Author(s) under exclusive licence to The International Gastric Cancer Association and The Japanese Gastric Cancer Association.