ELONGATED HYPOCOTOYL5 (HY5) and PHYTOCHROME INTERACTING FACTORs (PIFs) are two types of important light-related regulators of plant growth, however, their interplay remains elusive. Here, we report that the activated tomato (Solanum lycopersicum) HY5 (SlHY5) triggers the transcription of a Calcium-dependent Protein Kinase SlCPK27. SlCPK27 interacts with and phosphorylates SlPIF4 at Ser-252 and Ser-308 phosphosites to promote its degradation. SlPIF4 promotes hypocotyl elongation mainly by activating the transcription of SlDWF, a key gene in brassinosteroid (BR) biosynthesis. Such a SlHY5-SlCPK27-SlPIF4-BR cascade not only plays a crucial role in photomorphogenesis but also regulates thermomorphogenesis. Our results uncover a previously unidentified mechanism that integrates Ca2+ signaling with the light signaling pathways to regulate plant growth by modulating BR biosynthesis in response to changes in ambient light and temperature.
Keywords: brassinosteroid; calcium-dependent protein kinase; light signal; photomorphogenesis.