α-C(sp3)-H (Hetero)Arylation of Thioethers Enabled by Photoexcited Triplet Ketone Catalysis

J Org Chem. 2024 Sep 6;89(17):12540-12546. doi: 10.1021/acs.joc.4c01480. Epub 2024 Aug 20.

Abstract

We report herein α-C(sp3)-H (hetero)arylation of thioethers enabled by dual nickel and photoexcited triplet ketone catalysis. The mild reaction conditions of this protocol tolerate a variety of functional groups and further facilitate the late-stage functionalization of biologically relevant molecules to afford corresponding products in moderate to good yields. Preliminary mechanistic studies suggest that the generation of the α-thioalkyl radical takes place through a hydrogen atom transfer (HAT) event, which is involved in the rate-limiting step and in the nickel cycle, the reaction of the α-thioalkyl radical with Ni(0)Ln catalyst followed by oxidative addition of aryl bromide is the dominating pathway. Furthermore, the heteroaromatic benzylic thioethers can also be achieved from the corresponding reduced 4-cyano pyridine derivatives in the presence of a ketone catalyst through a radical-radical coupling reaction without metal. The increased yield of the products in the presence of DABCO might indicate a higher rate of α-thioalkyl radical formation from thioethers through the HAT event by DABCO radical cation.