Antimicrobial peptides (AMPs) possess strong antibacterial activity and low drug resistance, making them ideal candidates for bactericidal drugs for addressing the issue of traditional antibiotic resistance. In this study, a template (G(XXKK)nI, G = Gly; X = Leu, Ile, Phe, or Trp; n = 2, 3, or 4; K = Lys; I = Ile.) was employed for the devised of a variety of novel α-helical AMPs with a high therapeutic index. The AMP with the highest therapeutic index, WK2, was ultimately chosen following a thorough screening process. It demonstrates broad-spectrum and potent activity against both standard and multidrug-resistant bacteria, while also showing low hemolysis and rapid and efficient time-kill kinetics. Additionally, WK2 exhibits excellent efficacy in treating mouse models of Klebsiella pneumonia-induced lung infections and methicillin-resistant Staphylococcus aureus (MRSA)-induced skin wound infections while demonstrating good safety profiles in vivo. In conclusion, the template-based design methodology for novel AMPs with high therapeutic indices offers new insights into addressing antibiotic resistance problems. WK2 represents a promising antimicrobial agent.
Keywords: WK2; antimicrobial peptides; drug resistance; template design method.