Background and aim: Continuous glucose monitoring systems (CGMs) have been commercially available since 1999. However, automated insulin delivery systems may benefit from real-time inputs in addition to glucose. Continuous multi-analyte sensing platforms will meet this area of potential growth without increasing the burden of additional devices. We aimed to generate pilot data regarding the safety and function of a first-in-human, single-probe glucose/lactate multi-analyte continuous sensor.
Methods: The investigational glucose/lactate continuous multi-analyte sensor (PercuSense Inc, Valencia, California) was inserted to the upper arms of 16 adults with diabetes, and data were available for analysis from 11 of these participants (seven female; mean [SD] = age 43 years [16]; body mass index [BMI] = 27 kg/m2 [5]). A commercially available Guardian 3 CGM (Medtronic, Northridge, California) was also inserted into the abdomen for comparison. All participants underwent a meal-test followed by an exercise challenge on day 1 and day 4 of wear. Performance was benchmarked against venous blood YSI glucose and lactate values.
Results: The investigational glucose sensor had an overall mean absolute relative difference (MARD) of 14.5% (median = 11.2%) which improved on day 4 compared with day 1 (13.9% vs 15.2%). The Guardian 3 CGM had an overall MARD of 13.9% (median = 9.4%). The lactate sensor readings within 20/20% and 40/40% of YSI values were 59.7% and 83.1%, respectively.
Conclusions: Our initial data support safety and functionality of a novel glucose/lactate continuous multi-analyte sensor. Further sensor refinement will improve run-in performance and accuracy.
Keywords: continuous glucose monitoring; continuous lactate monitoring; feasibility study; multi-analyte sensor.