Tissue Inhibitor of Metalloproteinase 3 (TIMP3) mutations increase glycolytic activity and dysregulate glutamine metabolism in RPE cells

Mol Metab. 2024 Oct:88:101995. doi: 10.1016/j.molmet.2024.101995. Epub 2024 Jul 22.

Abstract

Objectives: Mutations in Tissue Inhibitor of Metalloproteinases 3 (TIMP3) cause Sorsby's Fundus Dystrophy (SFD), a dominantly inherited, rare form of macular degeneration that results in vision loss. TIMP3 is synthesized primarily by retinal pigment epithelial (RPE) cells, which constitute the outer blood-retinal barrier. One major function of RPE is the synthesis and transport of vital nutrients, such as glucose, to the retina. Recently, metabolic dysfunction in RPE cells has emerged as an important contributing factor in retinal degenerations. We set out to determine if RPE metabolic dysfunction was contributing to SFD pathogenesis.

Methods: Quantitative proteomics was conducted on RPE of mice expressing the S179C variant of TIMP3, known to be causative of SFD in humans. Proteins found to be differentially expressed (P < 0.05) were analyzed using statistical overrepresentation analysis to determine enriched pathways, processes, and protein classes using g:profiler and PANTHER Gene Ontology. We examined the effects of mutant TIMP3 on RPE metabolism using human ARPE-19 cells expressing mutant S179C TIMP3 and patient-derived induced pluripotent stem cell-derived RPE (iRPE) carrying the S204C TIMP3 mutation. RPE metabolism was directly probed using isotopic tracing coupled with GC/MS analysis. Steady state [U-13C6] glucose isotopic tracing was preliminarily conducted on S179C ARPE-19 followed by [U-13C6] glucose and [U-13C5] glutamine isotopic tracing in SFD iRPE cells.

Results: Quantitative proteomics and enrichment analysis conducted on RPE of mice expressing mutant S179C TIMP3 identified differentially expressed proteins that were enriched for metabolism-related pathways and processes. Notably these results highlighted dysregulated glycolysis and glucose metabolism. Stable isotope tracing experiments with [U-13C6] glucose demonstrated enhanced glucose utilization and glycolytic activity in S179C TIMP3 APRE-19 cells. Similarly, [U-13C6] glucose tracing in SFD iRPE revealed increased glucose contribution to glycolysis and the TCA cycle. Additionally, [U-13C5] glutamine tracing found evidence of altered malic enzyme activity.

Conclusions: This study provides important information on the dysregulation of RPE glucose metabolism in SFD and implicates a potential commonality with other retinal degenerative diseases, emphasizing RPE cellular metabolism as a therapeutic target.

Keywords: Central carbon metabolism; Isotopic tracer; RPE; Retinal pigment epithelium metabolism; TIMP3.

MeSH terms

  • Animals
  • Cell Line
  • Glutamine* / metabolism
  • Glycolysis*
  • Humans
  • Macular Degeneration / genetics
  • Macular Degeneration / metabolism
  • Mice
  • Mutation*
  • Proteomics / methods
  • Retinal Pigment Epithelium* / metabolism
  • Tissue Inhibitor of Metalloproteinase-3* / genetics
  • Tissue Inhibitor of Metalloproteinase-3* / metabolism

Substances

  • Glutamine
  • TIMP3 protein, human
  • Tissue Inhibitor of Metalloproteinase-3