Background: From the first steps of prostate cancer (PCa) initiation, tumours are in contact with the most-proximal adipose tissue called periprostatic adipose tissue (PPAT). Extracellular vesicles are important carriers of non-coding RNA such as miRNAs that are crucial for cellular communication. The secretion of extracellular vesicles by PPAT may play a key role in the interactions between adipocytes and tumour. Analysing the PPAT exovesicles (EVs) derived-miRNA content can be of great relevance for understanding tumour progression and aggressiveness.
Methods: A total of 24 samples of human PPAT and 17 samples of perivesical adipose tissue (PVAT) were used. EVs were characterized by western blot and transmission electron microscopy (TEM), and uptake by PCa cells was verified by confocal microscopy. PPAT and PVAT explants were cultured overnight, EVs were isolated, and miRNA content expression profile was analysed. Pathway and functional enrichment analyses were performed seeking potential miRNA targets. In vitro functional studies were evaluated using PCa cells lines, miRNA inhibitors and target gene silencers.
Results: Western blot and TEM revealed the characteristics of EVs derived from PPAT (PPAT-EVs) samples. The EVs were up taken and found in the cytoplasm of PCa cells. Nine miRNAs were differentially expressed between PPAT and PVAT samples. The RORA gene (RAR Related Orphan Receptor A) was identified as a common target of 9 miRNA-regulated pathways. In vitro functional analysis revealed that the RORA gene was regulated by PPAT-EVs-derived miRNAs and was found to be implicated in cell proliferation and inflammation.
Conclusion: Tumour periprostatic adipose tissue is linked to PCa tumour aggressiveness and could be envisaged for new therapeutic strategies.
Keywords: RORA gene; Exovesicles; Periprostatic adipose tissue; Prostate cancer; miRNAs.
© 2024. The Author(s).