Organizers are specialized cell populations that orchestrate cell patterning and axon guidance in the developing nervous system. Although non-human models have led to fundamental discoveries about the organization of the nervous system midline by the floor plate, an experimental model of human floor plate would enable broader insights into regulation of human neurodevelopment and midline connectivity. Here, we have developed stem cell-derived organoids resembling human floor plate (hFpO) and assembled them with spinal cord organoids (hSpO) to generate midline assembloids (hMA). We demonstrate that hFpO promote Sonic hedgehog-dependent ventral patterning of human spinal progenitors and Netrin-dependent guidance of human commissural axons, paralleling non-human models. To investigate evolutionary-divergent midline regulators, we profiled the hFpO secretome and identified 27 evolutionarily divergent genes between human and mouse. Utilizing the hMA platform, we targeted these candidates in an arrayed CRISPR knockout screen and reveal that GALNT2 , a gene involved in O-linked glycosylation, impairs floor plate-mediated guidance of commissural axons in humans. This novel platform extends prior axon guidance discoveries into human-specific neurobiology with implications for mechanisms of nervous system evolution and neurodevelopmental disorders.