This study provides a detailed understanding of the preclinical pharmacokinetics and metabolism of ELP-004, an osteoclast inhibitor in development for the treatment of bone erosion. Current treatments for arthritis, including biological disease-modifying antirheumatic drugs, are not well-tolerated in a substantial subset of arthritis patients and are expensive; therefore, new treatments are needed. Pharmacokinetic parameters of ELP-004 were tested with intravenous, oral, and subcutaneous administration and found to be rapidly absorbed and distributed. We found that ELP-004 was non-mutagenic, did not induce chromosome aberrations, non-cardiotoxic, and had minimal off-target effects. Using in vitro hepatic systems, we found that ELP-004 is primarily metabolized by CYP1A2 and CYP2B6 and predicted metabolic pathways were identified. Finally, we show that ELP-004 inhibits osteoclast differentiation without suppressing overall T-cell function. These preclinical data will inform future development of an oral compound as well as in vivo efficacy studies in mice.
Keywords: CYP450; metabolism; mice; osteoclast; pharmacokinetics; preclinical.
© 2024 The Author(s). Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd.