Seamounts are ecological oases nurturing abundant fisheries resources and epibenthic megafauna in the vast oligotrophic ocean. Despite their significance, the formation mechanisms underlying these seamount ecological oases remain uncertain. To shed light on this phenomenon, this study conducted interdisciplinary in situ observations focusing on a shallow seamount in the oligotrophic ocean. The findings show that the seamount's topography interferes with the oceanic current to generate lee waves, effectively enhancing the nutrient supply to the euphotic layer downstream of the seamount. This continuous supply enhances phytoplankton biomass and subsequently the grazing and diurnal vertical migration of zooplankton, rapidly transporting the augmented phytoplankton biomass to the aphotic layer. Unlike the cyclonic eddies that move in the upper ocean, seamounts stand at fixed locations creating a more efficient and steady active transport loop. This active transport loop connects the euphotic and twilight zones, potentially conveying nourishment to benthic ecosystems to create stereoscopic oases in the oligotrophic ocean.