Visuospatial attention (VSA) is a cognitive function that enables athletes, particularly those engaged in open-skill sports, to allocate attentional resources efficiently to the appropriate target and in the appropriate direction. Studies have indicated that expert players exhibit superior cognitive performance to that of novices. However, no study has investigated differences in VSA performance among elite, expert, and intermediate badminton players or the potential neurophysiological mechanisms underlying such differences. Accordingly, the present study explored neuropsychological and neurophysiological parameters during VSA tasks among badminton players of varying competitive levels. The study included 54 participants and divided them into three groups according to their competition records: elite (n = 18), expert (n = 18), and intermediate (n = 18). Their neuropsychological performance and brain event-related potentials (ERPs) during the Posner cueing paradigm were collected. Although the three groups did not differ in their accuracy rates, ERP N2 amplitudes, or N2 or P3 latencies, the elite and expert groups exhibited notably faster reaction times and more pronounced P3 amplitudes than did the intermediate group during the cognitive task. However, we did not observe these between-group differences when we controlled for the covariate training years. Additionally, the elite and expert groups exhibited comparable neurocognitive performance. These findings indicate that badminton players' competitive levels influence their VSA. However, the beneficial effects on neuropsychological and neurophysiological performance could stabilize after a certain level of badminton competence is reached. Year of training could also be a major factor influencing badminton players' neurocognitive performance in VSA tasks.
Keywords: Badminton; Behavioral; Competence; Event-related potential; Visuospatial attention.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.