We demonstrate limited-tilt, serial section electron tomography (ET), which can non-destructively map brain circuits over large 3D volumes and reveal high-resolution, supramolecular details within subvolumes of interest. We show accelerated ET imaging of thick sections (>500 nm) with the capacity to resolve key features of neuronal circuits including chemical synapses, endocytic structures, and gap junctions. Furthermore, we systematically assessed how imaging parameters affect image quality and speed to enable connectomic-scale projects.