An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD)

Nat Metab. 2024 Jun;6(6):1178-1196. doi: 10.1038/s42255-024-01043-6. Epub 2024 Jun 12.

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.

MeSH terms

  • Animals
  • Diet, Western / adverse effects
  • Disease Models, Animal*
  • Humans
  • Liver / metabolism
  • Liver / pathology
  • Liver Cirrhosis / etiology
  • Liver Cirrhosis / metabolism
  • Male
  • Metabolic Diseases / etiology
  • Metabolic Diseases / metabolism
  • Mice
  • Non-alcoholic Fatty Liver Disease* / etiology
  • Non-alcoholic Fatty Liver Disease* / metabolism
  • Non-alcoholic Fatty Liver Disease* / pathology
  • Retrospective Studies

Grants and funding