Single-chain nanoparticles (SCNPs) are a fascinating class of soft nano-objects with promising properties and relevance to protein condensates, polymer nanocomposites, nanomedicine, bioimaging, catalysis, and drug delivery. We combine molecular dynamics simulations and equilibrium and time-dependent statistical mechanical theory to construct a unified understanding of how the internal conformational structure of SCNPs, of both a simple fractal globule-like form and more complex objects with multiple internal intermediate length scales, determines nm-scale intermolecular packing correlations, thermodynamic properties, and center-of-mass diffusion over a wide range of concentrations up to dense melts. The intermolecular pair correlations generically exhibit a distinctive deep correlation hole form due to SCNP internal connectivity structure and repulsive interparticle interactions associated with a globular-like conformation on the macromolecular scale, with concentration-dependent deviations at small separations. Unanticipated exponential-like dependences of the equation-of-state, osmotic compressibility, and center-of-mass diffusion constant on SCNP macromolecular packing fraction are theoretically predicted and confirmed via simulations. System-specific behaviors are found associated with SCNP internal structure, but overarching regularities are identified and understood based on a generalized effective globule conformation on macromolecular scales. Diffusivity slows down by 2-3 decades with increasing concentration and is understood as a consequence of a nonactivated excluded volume-driven weak-caging process associated with space-time correlated intermolecular forces experienced by the SCNP. Good agreement between the theory and simulations is established, testable predictions are made, and a quantitative comparison with viscosity measurements on a specific SCNP fluid is carried out. The basic theoretical approach can potentially be extended to treat the chemical and physical consequences of varying the structure of other classes of soft nanoparticles with distinctive internal nanoscale organization relevant in nanotechnology and nanomedicine, and the possible emergence of macromolecular kinetically arrested glasses.
Keywords: center-of-mass diffusion; globular conformation; intermolecular structure; molecular dynamics simulations; single-chain nanoparticles; statistical mechanical theory; thermodynamic properties.