Plasma proteome analysis implicates novel proteins as potential therapeutic targets for chronic kidney disease: A proteome-wide association study

Heliyon. 2024 May 22;10(11):e31704. doi: 10.1016/j.heliyon.2024.e31704. eCollection 2024 Jun 15.

Abstract

Chronic kidney disease (CKD) is prevalent globally with limited therapeutic drugs available. To systemically identify novel proteins involved in the pathogenesis of CKD and possible therapeutic targets, we integrated human plasma proteomes with the genome-wide association studies (GWASs) of CKD, estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN) to perform proteome-wide association study (PWAS), Mendelian Randomization and Bayesian colocalization analyses. The single-cell RNA sequencing data of healthy human and mouse kidneys were analyzed to explore the cell-type specificity of identified genes. Functional enrichment analysis was conducted to investigate the involved signaling pathways. The PWAS identified 22 plasma proteins significantly associated with CKD. Of them, the significant associations of three proteins (INHBC, LMAN2, and SNUPN) were replicated in the GWASs of eGFR, and BUN. Mendelian Randomization analyses showed that INHBC and SNUPN were causally associated with CKD, eGFR, and BUN. The Bayesian colocalization analysis identified shared causal variants for INHBC in CKD, eGFR, and BUN (all PP4 > 0.75). The single-cell RNA sequencing revealed that the INHBC gene was sparsely scattered within the kidney cells. This proteomic study revealed that INHBC, LMAN2, and SNUPN may be involved in the pathogenesis of CKD, which represent novel therapeutic targets and warrant further exploration in future research.

Keywords: Blood urea nitrogen; Chronic kidney disease; Estimated glomerular filtration rate; Mendelian randomization; Plasma proteomes.