Risks to Human Health from Mercury in Gold Mining in the Coastal Region of Ecuador

Toxics. 2024 Apr 29;12(5):323. doi: 10.3390/toxics12050323.

Abstract

Artisanal and small-scale gold mining (ASGM) plays a crucial role in global gold production. However, the adoption of poor mining practices or the use of mercury (Hg) in gold recovery processes has generated serious environmental contamination events. The focus of this study is assessing the concentration of Hg in surface waters within the coastal region of Ecuador. The results are used to conduct a human health risk assessment applying deterministic and probabilistic methods, specifically targeting groups vulnerable to exposure in affected mining environments. Between April and June 2022, 54 water samples were collected from rivers and streams adjacent to mining areas to determine Hg levels. In the health risk assessment, exposure routes through water ingestion and dermal contact were considered for both adults and children, following the model structures outlined by the U.S. Environmental Protection Agency. The results indicate elevated Hg concentrations in two of the five provinces studied, El Oro and Esmeraldas, where at least 88% and 75% of the samples, respectively, exceeded the maximum permissible limit (MPL) set by Ecuadorian regulations for the preservation of aquatic life. Furthermore, in El Oro province, 28% of the samples exceeded the MPL established for drinking water quality. The high concentrations of Hg could be related to illegal mining activity that uses Hg for gold recovery. Regarding the human health risk assessment, risk values above the safe exposure limit were estimated. Children were identified as the most vulnerable receptor. Therefore, there is an urgent need to establish effective regulations that guarantee the protection of river users in potentially contaminated areas. Finally, it is important to continue investigating the contamination caused by human practices in the coastal region.

Keywords: environmental pollution; gold mining; non-carcinogenic risk; risk assessment; water quality.

Grants and funding

Open access funding provided by Università della Calabria within the CRUI-CARE Agreement. This research received the fnancial support of the European Commission through the projects: H2020-MSCA-RISE REMIND “Renewable Energies for Water Treatment and Reuse in Mining Industries” (Grant agreement ID: 823948).