Dual-Site Biomacromolecule Doped Poly(3, 4-Ethylenedioxythiophene) for Bosting Both Anticoagulant and Electrochemical Performances

Adv Healthc Mater. 2024 May 21:e2401134. doi: 10.1002/adhm.202401134. Online ahead of print.

Abstract

Poly(3, 4-ethylenedioxythiophene) (PEDOT) as a new generation of intelligent conductive polymers, is attracting much attention in the field of tissue engineering. However, its water dispersibility, conductivity, and biocompatibility are incompatible, which limit its further development. In this work, biocompatible electrode material of PEDOT doped with sodium sulfonated alginate (SS) which contains two functional groups of sulfonic acid and carboxylic acid per repeat unit of the macromolecule. The as dual-site doping strategy simultaneously boosts anticoagulant and electrochemical performances, for example, good hydrophilicity (water contact angle of 59.40°), well dispersibility (dispersion solution unstratified in 30 days), high conductivity (4.45 S m-1), and enhanced anticoagulant property (extended activated partial thrombin time value of 59.0 s), forming an adjustable PEDOT: biomacromolecule interface; this fills the technical gap of implantable bioelectronics in terms of coagulation and thrombosis risk. At the same time, the assembled all-in-one supercapacitor with anticoagulant properties is prepared by PEDOT: sodium sulfonated alginate as electrode material and sodium alginate hydrogel as electrolyte layer. The dual-site doping strategy provides a new opinion for the design and optimization of functional conductive polymers and its applications in implantable energy storage fields.

Keywords: anticoagulant; electronic doping; implantable; poly(3, 4‐ethylenedioxythiophene); supercapacitor.