The aim of this research was to examine the correlation between the exposure to bisphenol analogues (BPs), such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and the risk of developing systemic lupus erythematosus (SLE). Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was utilized to measure the levels of BPA, BPF, and BPS in the urine of 168 female participants diagnosed with SLE and 175 female participants who were deemed healthy controls. Logistic regression models were utilized to assess the connections between levels of bisphenol and the risk of SLE. The findings indicated that levels of BPA and BPF in the urine of individuals with SLE were markedly elevated compared to those in the control group. Higher exposure to BPA and BPF exhibited positive dose-response relationships with increased SLE risk. No significant associations were identified between BPS and the risk of SLE. These findings suggest exposure to BPA and BPF may be implicated as novel environmental triggers in the development of autoimmunity such as SLE. The significantly increased levels of these bisphenol analogues detected in SLE patients versus healthy controls, along with the associations between higher exposures and elevated SLE risk, which offers crucial hints for comprehending how endocrine-disrupting substances contribute to the genesis of autoimmune illnesses. Further research using robust longitudinal assessments of bisphenol analogue exposures is warranted to corroborate these epidemiological findings. Overall, this study highlights potential environmental risk factors for SLE while calling for additional investigation into the impact of bisphenol exposures on autoimmunity development.
Keywords: Autoimmunity; Bisphenol analogues; Environmental exposure; Systemic lupus erythematosus.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.