Background: Epidermal growth factor receptor (EGFR) T790M mutation is the standard predictive biomarker for third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment. While not all T790M-positive patients respond to third-generation EGFR-TKIs and have a good prognosis, it necessitates novel tools to supplement EGFR genotype detection for predicting efficacy and stratifying EGFR-mutant patients with various prognoses. Mixture-of-experts (MoE) is designed to disassemble a large model into many small models. Meanwhile, it is also a model ensembling method that can better capture multiple patterns of intrinsic subgroups of enrolled patients. Therefore, the combination of MoE and Cox algorithm has the potential to predict efficacy and stratify survival in non-small cell lung cancer (NSCLC) patients with EGFR mutations.
Methods: We utilized the electronic medical record (EMR) and pharmacokinetic parameters of 326 T790M-mutated NSCLC patients, including 283 patients treated with Abivertinib in phase I (n=177, for training) and II (n=106, for validation) clinical trials and an additional validation cohort 2 comprising 43 patients treated with BPI-7711. Furthermore, 18 patients underwent whole-exome sequencing for biological interpretation of CoxMoE. We evaluated the predictive performance for therapeutic response using the area under the curve (AUC) and the Concordance index (C-index) for progression-free survival (PFS).
Results: CoxMoE exhibited AUCs of 0.73-0.83 for predicting efficacy defined by best overall response (BoR) and achieved C-index values of 0.64-0.65 for PFS prediction in training and validating cohorts. The PFS of 198 patients with a low risk [median, 6.0 (range, 1.0-23.3) months in the abivertinib treated cohort; median 16.5 (range, 1.4-27.4) months in BPI-7711 treated cohort] of being non-responder increased by 43% [hazard ratio (HR), 0.56; 95% confidence interval (CI), 0.40-0.78; P=0.0013] and 50% (HR, 0; 95% CI, 0-0; P=0.01) compared to those at high-risk [median, 4.2 (range, 1.0-35) months in the abivertinib treated cohort; median, 11.0 (range, 1.4-25.1) months in BPI-7711 treated cohort]. Additionally, activated partial thromboplastin time (APTT), creatinine clearance (Ccr), monocyte, and steady-state plasma trough concentration utilited to construct model were found significantly associated with drug resistance and aggressive tumor pathways. A robust correlation was observed between APTT and Ccr with PFS (log-rank test; P<0.01) and treatment response (Wilcoxon test; P<0.05), respectively.
Conclusions: CoxMoE offers a valuable approach for patient selection by forecasting therapeutic response and PFS utilizing laboratory tests and pharmacokinetic parameters in the setting of early-phase clinical trials. Simultaneously, CoxMoE could predict the efficacy of third-generation EGFR-TKI non-invasively for T790M-positive NSCLC patients, thereby complementing existing EGFR genotype detection.
Keywords: Deep learning; early clinical phase trial; prognosis prediction; third-generation EGFR-TKI.
2024 Translational Lung Cancer Research. All rights reserved.