Susceptibility source separation, or χ-separation, estimates diamagnetic (χdia) and paramagnetic susceptibility (χpara) signals in the brain using local field and R2' (= R2* - R2) maps. Recently proposed R2*-based χ-separation methods allow for χ-separation using only multi-echo gradient echo (ME-GRE) data, eliminating the need for additional data acquisition for R2 mapping. Although this approach reduces scan time and enhances clinical utility, the impact of missing R2 information remains a subject of exploration. In this study, we evaluate the viability of two previously proposed R2*-based χ-separation methods as alternatives to their R2'-based counterparts: model-based R2*-χ-separation versus χ-separation and deep learning-based χ-sepnet-R2* versus χ-sepnet-R2'. Their performances are assessed in individuals with multiple sclerosis (MS), comparing them with their corresponding R2'-based counterparts (i.e., R2*-χ-separation vs. χ-separation and χ-sepnet-R2* vs. χ-sepnet-R2'). The evaluations encompass qualitative visual assessments by experienced neuroradiologists and quantitative analyses, including region of interest analyses and linear regression analyses. Qualitatively, R2*-χ-separation tends to report higher χpara and χdia values compared with χ-separation, leading to less distinct lesion contrasts, while χ-sepnet-R2* closely aligns with χ-sepnet-R2'. Quantitative analysis reveals a robust correlation between both R2*-based methods and their R2'-based counterparts (r ≥ 0.88). Specifically, in the whole-brain voxels, χ-sepnet-R2* exhibits higher correlation and better linearity than R2*-χ-separation (χdia/χpara from R2*-χ-separation: r = 0.88/0.90, slope = 0.79/0.86; χdia/χpara from χ-sepnet-R2*: r = 0.90/0.92, slope = 0.99/0.97). In MS lesions, both R2*-based methods display comparable correlation and linearity (χdia/χpara from R2*-χ-separation: r = 0.90/0.91, slope = 0.98/0.91; χdia/χpara from χ-sepnet-R2*: r = 0.88/0.88, slope = 0.91/0.95). Notably, χ-sepnet-R2* demonstrates negligible offsets, whereas R2*-χ-separation exhibits relatively large offsets (0.02 ppm in the whole brain and 0.01 ppm in the MS lesions), potentially indicating the false presence of myelin or iron in MS lesions. Overall, both R2*-based χ-separation methods demonstrated their viability as alternatives to their R2'-based counterparts. χ-sepnet-R2* showed better alignment with its R2'-based counterpart with minimal susceptibility offsets, compared with R2*-χ-separation that reported higher χpara and χdia values compared with R2'-based χ-separation.
Keywords: chi‐separation; clinical evaluation; multiple sclerosis; susceptibility source separation; χ‐sepnet‐R2*.
© 2024 John Wiley & Sons Ltd.