A dynamin superfamily-like pseudoenzyme coordinates with MICOS to promote cristae architecture

Curr Biol. 2024 Jun 17;34(12):2606-2622.e9. doi: 10.1016/j.cub.2024.04.028. Epub 2024 Apr 30.

Abstract

Mitochondrial cristae architecture is crucial for optimal respiratory function of the organelle. Cristae shape is maintained in part by the mitochondrial contact site and cristae organizing system (MICOS) complex. While MICOS is required for normal cristae morphology, the precise mechanistic role of each of the seven human MICOS subunits, and how the complex coordinates with other cristae-shaping factors, has not been fully determined. Here, we examine the MICOS complex in Schizosaccharomyces pombe, a minimal model whose genome only encodes for four core subunits. Using an unbiased proteomics approach, we identify a poorly characterized inner mitochondrial membrane protein that interacts with MICOS and is required to maintain cristae morphology, which we name Mmc1. We demonstrate that Mmc1 works in concert with MICOS to promote normal mitochondrial morphology and respiratory function. Mmc1 is a distant relative of the dynamin superfamily of proteins (DSPs), GTPases, which are well established to shape and remodel membranes. Similar to DSPs, Mmc1 self-associates and forms high-molecular-weight assemblies. Interestingly, however, Mmc1 is a pseudoenzyme that lacks key residues required for GTP binding and hydrolysis, suggesting that it does not dynamically remodel membranes. These data are consistent with the model that Mmc1 stabilizes cristae architecture by acting as a scaffold to support cristae ultrastructure on the matrix side of the inner membrane. Our study reveals a new class of proteins that evolved early in fungal phylogeny and is required for the maintenance of cristae architecture. This highlights the possibility that functionally analogous proteins work with MICOS to establish cristae morphology in metazoans.

Keywords: MICOS; cristae; dynamin; fission yeast; membrane remodeling; mitochondria; pseudoenzyme.

MeSH terms

  • Dynamins / genetics
  • Dynamins / metabolism
  • Mitochondria / metabolism
  • Mitochondria Associated Membranes
  • Mitochondrial Membranes* / metabolism
  • Mitochondrial Proteins* / genetics
  • Mitochondrial Proteins* / metabolism
  • Schizosaccharomyces pombe Proteins* / genetics
  • Schizosaccharomyces pombe Proteins* / metabolism
  • Schizosaccharomyces* / genetics
  • Schizosaccharomyces* / metabolism

Substances

  • Schizosaccharomyces pombe Proteins
  • Mitochondrial Proteins
  • Dynamins