Highly Dense N-N-Bridged Dinitramino Bistriazole-Based 3D Metal-Organic Frameworks with Balanced Outstanding Energetic Performance

ACS Appl Mater Interfaces. 2024 Apr 10. doi: 10.1021/acsami.4c04026. Online ahead of print.

Abstract

Due to the inherent conflict between energy and safety, the construction of energetic materials or energetic metal-organic frameworks (E-MOFs) with balanced thermal stability, sensitivity, and high detonation performance is challenging for chemists worldwide. In this regard, in recent times self-assembly of energetic ligands (high nitrogen- and oxygen-containing small molecules) with alkali metals were probed as a promising strategy to build high-energy materials with excellent density, insensitivity, stability, and detonation performance. Herein, based on the nitrogen-rich N,N'-([4,4'-bi(1,2,4-triazole)]-3,3'-dial)dinitramide (H2BDNBT) energetic ligand, two new environmentally benign E-MOFs including potassium [K2BDNBT]n (K-MOF) and sodium [Na2BDNBT]n (Na-MOF) have been introduced and characterized by NMR, IR, TGA-DSC, ICP-MS, PXRD, elemental analyses, and SCXRD. Interestingly, Na-MOF and K-MOF demonstrate solvent-free 3D dense frameworks having crystal densities of 2.16 and 2.14 g cm-3, respectively. Both the E-MOFs show high detonation velocity (VOD) of 8557-9724 m/s, detonation pressure (DP) of 30.41-36.97 GPa, positive heat of formation of 122.52-242.25 kJ mol-1, and insensitivity to mechanical stimuli such as impact and friction (IS = 30-40 J, FS > 360 N). Among them, Na-MOF has a detonation velocity (9724 m/s) superior to that of conventional explosives. Additionally, both the E-MOFs are highly heat-resistant, having higher decomposition (319 °C for K-MOF and 293 °C for Na-MOF) than the traditional explosives RDX (210 °C), HMX (279 °C), and CL-20 (221 °C). This stability is ascribed to the extensive structure and strong covalent interactions between BDNBT2- and K(I)/Na(I) ions. To the best of our knowledge, for the first time, we report dinitramino-based E-MOFs as highly stable secondary explosives, and Na-MOF may serve as a promising next-generation high-energy-density material for the replacement of presently used secondary thermally stable energetic materials such as RDX, HNS, HMX, and CL-20.

Keywords: N−N-bridged ligand; detonation velocity; insensitivity; nontoxic metal; solvent-free 3D E-MOF; thermal stability; triazole.