Background: Allergic conjunctivitis (AC) afflicts a significant portion of the global populace. Yet, its metabolic foundations remain largely unexplored.
Methods: We applied Mendelian Randomization (MR) and Linkage Disequilibrium Score Regression (LDSC) to scrutinize a cohort comprising 20 958 AC cases and 356 319 controls. Data were amalgamated from the metabolomics GWAS server and the FinnGen project, under strict quality control protocols.
Results: Using two-sample MR analysis, 486 blood metabolites were investigated in relation to AC. The IVW approach highlighted 18 metabolites as closely tied to AC risk; of these, 16 retained significance post sensitivity assessments for heterogeneity and horizontal pleiotropy. LDSC analysis, adopted to bolster our findings and negate confounders from shared genetic markers, revealed 8 metabolites with marked heritability, including: palmitate (OR = 0.614), 3-methoxytyrosine (OR = 0.657), carnitine (OR = 1.368), threonate (OR = 0.828), N-[3-(2-Oxopyrrolidin-1-yl)propyl]acetamide (OR = 1.257), metoprolol acid metabolite (OR = 0.982), oleoylcarnitine (OR = 0.635), and 2-palmitoylglycerophosphocholine (OR = 1.351).
Conclusion: AC is precipitated by ocular responses to environmental allergens. Our study unveils a causal link between 8 blood metabolites and AC. This insight accentuates the role of metabolites in AC onset, suggesting novel avenues for its early prediction, targeted prevention, and tailored therapeutic interventions.
Keywords: Allergic conjunctivitis; Causal associations; GWAS; Mendelian randomization; Metabolites.
© 2024 The Authors.