Neutrophil extracellular traps (NETs) seriously impede diabetic wound healing. The disruption or scavenging of NETs using deoxyribonuclease (DNase) or cationic nanoparticles has been limited by liberating trapped bacteria, short half-life, or potential cytotoxicity. In this study, a positive correlation between the NETs level in diabetic wound exudation and the severity of wound inflammation in diabetic patients is established. Novel NETs scavenging bio-based hydrogel microspheres 'micro-cage', termed mPDA-PEI@GelMA, is engineered by integrating methylacrylyl gelatin (GelMA) hydrogel microspheres with cationic polyethyleneimine (PEI)-functionalized mesoporous polydopamine (mPDA). This unique 'micro-cage' construct is designed to non-contact scavenge of NETs between nanoparticles and the diabetic wound surface, minimizing biological toxicity and ensuring high biosafety. NETs are introduced into 'micro-cage' along with wound exudation, and cationic mPDA-PEI immobilizes them inside the 'micro-cage' through a strong binding affinity to the cfDNA web structure. The findings demonstrate that mPDA-PEI@GelMA effectively mitigates pro-inflammatory responses associated with diabetic wounds by scavenging NETs both in vivo and in vitro. This work introduces a novel nanoparticle non-contact NETs scavenging strategy to enhance diabetic wound healing processes, with potential benefits in clinical applications.
Keywords: diabetic wound; hydrogel microspheres; inflammation modulation; mesoporous polydopamine; neutrophil extracellular traps.
© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.