Aim: To investigate the efficacy of intravenous (IV) fosfomycin as combination therapy for treatment of difficult-to-treat (DTT) acute and subacute infections with multi-drug-resistant (MDR) Gram-negative bacteria (GNB), and risk factors associated with 90-day mortality.
Methods: A retrospective, observational, monocentric study enrolled patients treated with IV fosfomycin in combination regimens (≥72 h) for proven DTT-MDR-GNB infection. Multi-variate regression analysis identified independent risk factors for 90-day mortality. A propensity score for receiving fosfomycin was performed to control for confounding factors.
Results: In total, 70 patients were included in this study: 54.3% had carbapenem-resistant isolates, 31.4% had ceftazidime/avibactam-resistant isolates and 28.6% had ceftolozane/tazobactam-resistant isolates. The main pathogens were Pseudomonas aeruginosa (57.1%) and Klebsiella pneumoniae (22.9%). The most prevalent infections were nosocomial pneumonia (42.9%), osteomyelitis (17.1%) and intra-abdominal infections. All-cause 30- and 90-day mortality were 15.7% and 31.4%, respectively (18.9% and 50% considering acute DTT-MDR-GNB infections alone). Relapse at 30 days occurred in 22.9% of cases (29% with emergence of fosfomycin resistance). Mortality at 90 days was independently associated with septic shock and ceftolozane/tazobactam resistance. The relationship between resistance to ceftolozane/tazobactam and 90-day mortality was confirmed to be significant after adjustment by propensity score analysis (hazard ratio 5.84, 95% confidence interval 1.65-20.68; P=0.006).
Conclusions: Fosfomycin seems to be a promising salvage, combination treatment in DTT-MDR-GNB infections. Resistance to ceftolozane/tazobactam seems to be independently associated with treatment failure. Randomized clinical trials focusing on pathogen and infection sites are needed urgently to demonstrate the superiority of fosfomycin in combination with other agents for the resolution of DTT-MDR-GNB infections.
Keywords: Ceftolozane/tazobactam resistance; Combination therapy strategy; Difficult-to-treat infections; Fosfomycin; Multi-drug-resistant Gram-negative infections.
Copyright © 2024 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved.