Objective: This study evaluates an AI assistant developed using OpenAI's GPT-4 for interpreting pharmacogenomic (PGx) testing results, aiming to improve decision-making and knowledge sharing in clinical genetics and to enhance patient care with equitable access.
Materials and methods: The AI assistant employs retrieval-augmented generation (RAG), which combines retrieval and generative techniques, by harnessing a knowledge base (KB) that comprises data from the Clinical Pharmacogenetics Implementation Consortium (CPIC). It uses context-aware GPT-4 to generate tailored responses to user queries from this KB, further refined through prompt engineering and guardrails.
Results: Evaluated against a specialized PGx question catalog, the AI assistant showed high efficacy in addressing user queries. Compared with OpenAI's ChatGPT 3.5, it demonstrated better performance, especially in provider-specific queries requiring specialized data and citations. Key areas for improvement include enhancing accuracy, relevancy, and representative language in responses.
Discussion: The integration of context-aware GPT-4 with RAG significantly enhanced the AI assistant's utility. RAG's ability to incorporate domain-specific CPIC data, including recent literature, proved beneficial. Challenges persist, such as the need for specialized genetic/PGx models to improve accuracy and relevancy and addressing ethical, regulatory, and safety concerns.
Conclusion: This study underscores generative AI's potential for transforming healthcare provider support and patient accessibility to complex pharmacogenomic information. While careful implementation of large language models like GPT-4 is necessary, it is clear that they can substantially improve understanding of pharmacogenomic data. With further development, these tools could augment healthcare expertise, provider productivity, and the delivery of equitable, patient-centered healthcare services.
Keywords: AI assistant; OpenAI GPT-4; generative AI; large language models; pharmacogenomic testing; retrieval-augmented generation.
© The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.