Plasma proteomic signature of human longevity

Aging Cell. 2024 Jun;23(6):e14136. doi: 10.1111/acel.14136. Epub 2024 Mar 5.

Abstract

The identification of protein targets that exhibit anti-aging clinical potential could inform interventions to lengthen the human health span. Most previous proteomics research has been focused on chronological age instead of longevity. We leveraged two large population-based prospective cohorts with long follow-ups to evaluate the proteomic signature of longevity defined by survival to 90 years of age. Plasma proteomics was measured using a SOMAscan assay in 3067 participants from the Cardiovascular Health Study (discovery cohort) and 4690 participants from the Age Gene/Environment Susceptibility-Reykjavik Study (replication cohort). Logistic regression identified 211 significant proteins in the CHS cohort using a Bonferroni-adjusted threshold, of which 168 were available in the replication cohort and 105 were replicated (corrected p value <0.05). The most significant proteins were GDF-15 and N-terminal pro-BNP in both cohorts. A parsimonious protein-based prediction model was built using 33 proteins selected by LASSO with 10-fold cross-validation and validated using 27 available proteins in the validation cohort. This protein model outperformed a basic model using traditional factors (demographics, height, weight, and smoking) by improving the AUC from 0.658 to 0.748 in the discovery cohort and from 0.755 to 0.802 in the validation cohort. We also found that the associations of 169 out of 211 proteins were partially mediated by physical and/or cognitive function. These findings could contribute to the identification of biomarkers and pathways of aging and potential therapeutic targets to delay aging and age-related diseases.

Keywords: aging; longevity; proteomics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Aging / blood
  • Biomarkers / blood
  • Cohort Studies
  • Female
  • Humans
  • Longevity* / physiology
  • Male
  • Middle Aged
  • Proteomics* / methods

Substances

  • Biomarkers