Tracking the immune response profiles elicited by the BNT162b2 vaccine in COVID-19 unexperienced and experienced individuals

Clin Immunol. 2024 Apr:261:110164. doi: 10.1016/j.clim.2024.110164. Epub 2024 Feb 28.

Abstract

Multiple vaccines have been approved to control COVID-19 pandemic, with Pfizer/BioNTech (BNT162b2) being widely used. We conducted a longitudinal analysis of the immune response elicited after three doses of the BNT162b2 vaccine in individuals who have previously experienced SARS-CoV-2 infection and in unexperienced ones. We conducted immunological analyses and single-cell transcriptomics of circulating T and B lymphocytes, combined to CITE-seq or LIBRA-seq, and VDJ-seq. We found that antibody levels against SARS-CoV-2 Spike, NTD and RBD from wild-type, delta and omicron VoCs show comparable dynamics in both vaccination groups, with a peak after the second dose, a decline after six months and a restoration after the booster dose. The antibody neutralization activity was maintained, with lower titers against the omicron variant. Spike-specific memory B cell response was sustained over the vaccination schedule. Clonal analysis revealed that Spike-specific B cells were polyclonal, with a partial clone conservation from natural infection to vaccination. Spike-specific T cell responses were oriented towards effector and effector memory phenotypes, with similar trends in unexperienced and experienced individuals. The CD8 T cell compartment showed a higher clonal expansion and persistence than CD4 T cells. The first two vaccinations doses tended to induce new clones rather than promoting expansion of pre-existing clones. However, we identified a fraction of Spike-specific CD8 T cell clones persisting from natural infection that were boosted by vaccination and clones specifically induced by vaccination. Collectively, our observations revealed a moderate effect of the second dose in enhancing the immune responses elicited after the first vaccination. Differently, we found that a third dose was necessary to restore comparable levels of neutralizing antibodies and Spike-specific T and B cell responses in individuals who experienced a natural SARS-CoV-2 infection.

Keywords: SARS-CoV-2 vaccination; Single-cell multimodal longitudinal analysis; T and B cell memory to SARS-CoV-2 infection and vaccination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • BNT162 Vaccine
  • COVID-19* / prevention & control
  • Humans
  • Pandemics
  • SARS-CoV-2
  • Vaccination
  • Vaccines*

Substances

  • BNT162 Vaccine
  • Vaccines
  • Antibodies, Neutralizing
  • Antibodies, Viral

Supplementary concepts

  • SARS-CoV-2 variants