Precise tuning the structure of catalytic center is of great importance for the construction of enhanced electrochemiluminescence (ECL) emitters and the development of ECL amplification strategies, which is a key factor in improving the sensitivity of biosensors. In this work, we report the enhanced ECL emitters based on the porphyrin-based paddlewheel framework (PPF) with axial coordinated imidazole-like ligands (PPF/X, X = 2-methylimidazole (MeIm), imidazole (Im), benzimidazole (BIM)). In this system, the electron-donating ability of the axial ligands is positively correlated to its coordination ability to the paddlewheel units and the catalytic ability of the axially coordinated paddlewheel units. In addition, the electrochemical and ECL behavior of PPF/X (X = MeIm, Im, BIM) with different axial coordinated ligands are explored.
Keywords: Coordination regulation; Electrochemiluminescence; Imidazole derivative; Paddlewheel framework; Porphyrin.
Copyright © 2024 Elsevier B.V. All rights reserved.