Myopia is an independent risk factor for glaucoma, but the link between both conditions remains unknown. Both conditions induce connective tissue remodeling at the optic nerve head (ONH), including the peripapillary tissues. The purpose of this study was to investigate the thickness changes of the peripapillary tissues during experimental high myopia development in juvenile tree shrews. Six juvenile tree shrews experienced binocular normal vision, while nine received monocular -10D lens treatment starting at 24 days of visual experience (DVE) to induce high myopia in one eye and the other eye served as control. Daily refractive and biometric measurements and weekly optical coherence tomography scans of the ONH were obtained for five weeks. Peripapillary sclera (Scl), choroid-retinal pigment epithelium complex (Ch-RPE), retinal nerve fiber layer (RNFL), and remaining retinal layers (RRL) were auto-segmented using a deep learning algorithm after nonlinear distortion correction. Peripapillary thickness values were quantified from 3D reconstructed segmentations. All lens-treated eyes developed high myopia (-9.8 ± 1.5 D), significantly different (P < 0.001) from normal (0.69 ± 0.45 D) and control eyes (0.76 ± 1.44 D). Myopic eyes showed significant thinning of all peripapillary tissues compared to both, normal and control eyes (P < 0.001). At the experimental end point, the relative thinning from baseline was heterogeneous across tissues and significantly more pronounced in the Scl (-8.95 ± 3.1%) and Ch-RPE (-16.8 ± 5.8%) when compared to the RNFL (-5.5 ± 1.6%) and RRL (-6.7 ± 1.8%). Furthermore, while axial length increased significantly throughout the five weeks of lens wear, significant peripapillary tissue thinning occurred only during the first week of the experiment (until a refraction of -2.5 ± 1.9 D was reached) and ceased thereafter. A sectorial analysis revealed no clear pattern. In conclusion, our data show that in juvenile tree shrews, experimental high myopia induces significant and heterogeneous thinning of the peripapillary tissues, where the retina seems to be protected from profound thickness changes as seen in Ch-RPE and Scl. Peripapillary tissue thinning occurs early during high myopia development despite continued progression of axial elongation. The observed heterogeneous thinning may contribute to the increased risk for pathological optic nerve head remodeling and glaucoma later in life.
Keywords: High myopia; Optic nerve head; Optical coherence tomography; Peripapillary tissues; Tree shrew.
Copyright © 2024 Elsevier Ltd. All rights reserved.