Background and objectives: The impact of subthalamic deep-brain stimulation (STN-DBS) on motor asymmetry and its influence on both motor and non-motor outcomes remain unclear. The present study aims at assessing the role of STN-DBS on motor asymmetry and how its modulation translates into benefits in motor function, activities of daily living (ADLs) and quality of life (QoL).
Methods: Postoperative motor asymmetry has been assessed on the multicentric, prospective Predictive Factors and Subthalamic Stimulation in Parkinson's Disease cohort. Asymmetry was evaluated at both baseline (pre-DBS) and 1 year after STN-DBS. A patient was considered asymmetric when the right-to-left MDS-UPDRS part III difference was ≥ 5. In parallel, analyses have been carried out using the absolute right-to-left difference. The proportion of asymmetric patients at baseline was compared to that in the post-surgery evaluation across different medication/stimulation conditions.
Results: 537 PD patients have been included. The proportion of asymmetric patients was significantly reduced after both STN-DBS and medication administration (asymmetric patients: 50% in pre-DBS MedOFF, 35% in MedOFF/StimON, 26% in MedON/StimOFF, and 12% in MedON/StimON state). Older patients at surgery and with higher baseline UPDRS II scores were significantly less likely to benefit from STN-DBS at the level of motor asymmetry. No significant correlation between motor asymmetry and ADLs (UPDRS II) or overall QoL (PDQ-39) score was observed. Asymmetric patients had significantly higher mobility, communication, and daily living PDQ-39 sub-scores.
Conclusions: Both STN-DBS and levodopa lead to a reduction in motor asymmetry. Motor symmetry is associated with improvements in certain QoL sub-scores.
Keywords: Deep brain stimulation; Motor symmetry; Parkinson’s disease; Quality of life.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.